1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
use core::convert::{TryFrom, TryInto};
use serde::{Deserialize, Serialize};
use std::fs;
use nom::{
// branch::alt,
bytes::complete::take,
// combinator::{
// map, value, verify,
// },
// multi::{
// fill,
// },
number::complete::{
le_u16,
le_u32, //le_u64, le_u128,
u8,
},
sequence::tuple,
};
use crate::crypto::crc32;
use crate::util::is_default;
const START_OF_PROTECTED_FLASH: u32 = 0x9_DE00;
#[repr(u8)]
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum BootTag {
Nop = 0,
Tag = 1,
Load = 2,
Fill = 3,
Jump = 4,
Call = 5,
ChangeBootMode = 6,
Erase = 7,
Reset = 8,
MemoryEnable = 9,
ProgramPersistentBits = 0xA,
CheckFirmwareVersion = 0xB,
KeystoreToNonvolatile = 0xC,
KeystoreFromNonvolatile = 0xD,
}
// struct boot_command_t
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq)]
pub struct RawBootCommand {
pub checksum: u8,
pub tag: u8,
pub flags: u16,
pub address: u32,
pub count: u32,
pub data: u32,
}
impl RawBootCommand {
pub fn to_bytes(&self) -> [u8; 16] {
let mut buffer = vec![0, self.tag];
buffer.extend_from_slice(self.flags.to_le_bytes().as_ref());
buffer.extend_from_slice(self.address.to_le_bytes().as_ref());
buffer.extend_from_slice(self.count.to_le_bytes().as_ref());
buffer.extend_from_slice(self.data.to_le_bytes().as_ref());
let checksum = buffer[1..]
.iter()
.fold(0x5au8, |acc, x| acc.wrapping_add(*x));
buffer[0] = checksum;
buffer.try_into().unwrap()
}
pub fn from_bytes(bytes: &[u8]) -> nom::IResult<&[u8], Self, ()> {
let (i, (checksum, tag, flags, address, count, data)) =
tuple((u8, u8, le_u16, le_u32, le_u32, le_u32))(bytes)?;
// by previous, bytes.len() >= 16
info!("raw boot command: {}", hex_str!(&bytes[..16]));
let calculated_checksum = bytes[1..16]
.iter()
.fold(0x5au8, |acc, x| acc.wrapping_add(*x));
assert_eq!(calculated_checksum, checksum);
Ok((
i,
Self {
checksum,
tag,
flags,
address,
count,
data,
},
))
}
}
/// Commands used to define SB2.1 files
///
/// Currently, we only need to erase and load (partial) files.
///
/// ### Example
/// Since there does not seem to exit a command to enter the bootloader, but
/// a corrupt / missing firmware makes the MCU enter the bootloader, one way
/// to do so is the following specification, which erases the first flash page.
/// ```ignore
/// [[commands]]
/// cmd = "Erase"
/// start = 0
/// end = 512
/// ```
///
/// ### Example
/// To securely flash firmware, it is advised to write the first page last, so that
/// if flashing goes wrong or is interrupted, the MCU stays in the bootloader on next boot.
/// ```ignore
/// [[commands]]
/// cmd = "Erase"
/// start = 0
/// end = 0x8_9800
///
/// [[commands]]
/// ## write firmware, skipping first flash page
/// cmd = "Load"
/// file = "example.sb2"
/// src = 512
/// dst = 512
///
/// [[commands]]
/// ## write first flash page of firmware
/// cmd = "Load"
/// file = "example.sb2"
/// len = 512
/// ```
#[derive(Clone, Debug, Deserialize, Eq, PartialEq, Serialize)]
#[serde(tag = "cmd")]
pub enum SingleBootCommandDescription {
/// Maps to `BootCommand::EraseRegion`, but `start` and `end` are given in bytes.
Erase {
start: u32,
end: u32,
},
/// Load (part) of the data reference in `source` to flash.
///
/// The syntax is such that if source data and destination flash were slices
/// `src: &[u8]` and `dst: &mut [u8]`, this command would do:
/// ```ignore
/// let src_len = src.len() - cmd.src;
/// let len = cmd.len.unwrap_or(src_len);
/// dst[cmd.dst..][..len].copy_from_slice(&src[cmd.src..][..len]);
/// ```
Load {
file: String,
/// source offset in bytes (default 0)
#[serde(default)]
#[serde(skip_serializing_if = "is_default")]
src: u32,
/// destination offset in bytes (default 0)
#[serde(default)]
#[serde(skip_serializing_if = "is_default")]
dst: u32,
/// number of bytes to copy
// #[serde(default)]
#[serde(skip_serializing_if = "Option::is_none")]
len: Option<u32>,
},
CheckNonsecureFirmwareVersion {
version: u32,
},
CheckSecureFirmwareVersion {
version: u32,
},
}
/// High level commands that lpc55 will convert safely into commands used to define SB2.1 files
///
/// ### Example
/// ```ignore
/// [[commands]]
/// seq = "UploadImage"
/// image = "Signed"
/// ```
///
#[derive(Clone, Debug, Deserialize, Eq, PartialEq, Serialize)]
#[serde(tag = "seq")]
pub enum BootCommandSequenceDescription {
/// Takes the filename specified in image from `config.firmware`,
/// pads to 512B if necessary, erases flash, then uploads securely
/// (all but first block, only then the first block).
UploadSignedImage,
/// Takes the version specified in `config.firmware.product` and
/// checks that it is greater than or equal to both the "Secure"
/// and "Nonsecure" firmware versions in the customer data page on the device.
///
/// This uses an interpretation and encoding of the `[u16; 3]` Version
/// as an incrementing `u32` counter. Namely, major version is interpreted
/// as an era (signaling breaking changes) and restricted to below 1024.
/// Minor version is interpreted as days since the twenties (unrestricted
/// for practical purposes). Patch version is restricted to below 64, and
/// would rarely be used.
///
/// So, for instance, `1:20210520` would correspond to `1.505.0`,
/// since `(dt.date(2021, 5, 20) - dt.date(2020, 1, 1)).days = 505`, and
/// map to the counter `(1 << 22) + (505 << 6) = 4226624`.
///
/// If the check fails, then the SB2 update stops.
CheckDerivedFirmwareVersions,
}
#[derive(Clone, Debug, Deserialize, Eq, PartialEq, Serialize)]
#[serde(untagged)]
pub enum BootCommandDescription {
Single(SingleBootCommandDescription),
Sequence(BootCommandSequenceDescription),
}
impl<'a> TryFrom<&'a SingleBootCommandDescription> for BootCommand {
type Error = anyhow::Error;
fn try_from(cmd: &'a SingleBootCommandDescription) -> anyhow::Result<BootCommand> {
use SingleBootCommandDescription::*;
Ok(match cmd {
Erase { start, end } => BootCommand::EraseRegion {
address: *start,
bytes: core::cmp::max(0, *end - *start),
},
Load {
file,
src,
dst,
len,
} => {
let image = fs::read(file)?;
if let Some(len) = len {
if (image.len() as u32) < len + src {
return Err(anyhow::anyhow!("image too small!"));
}
}
let src_len = image.len() - *src as usize;
let len = len.unwrap_or(src_len as u32) as usize;
let data = Vec::from(&image[*src as usize..][..len]);
BootCommand::Load {
address: *dst,
data,
}
}
CheckNonsecureFirmwareVersion { version } => {
BootCommand::CheckNonsecureFirmwareVersion { version: *version }
}
CheckSecureFirmwareVersion { version } => {
BootCommand::CheckSecureFirmwareVersion { version: *version }
}
})
}
}
#[derive(Clone, Debug, Deserialize, Eq, PartialEq, Serialize)]
// The LPC55xx ROM loader provides the support for the following bootloader commands:
// * WriteMemory, FillMemory, ConfigureMemory, FlashEraseAll, FlashEraseRegion,
// SB 2.1 introduces two new commands that can be used to prevent firmware roll-back:
// * SecureFirmwareVersion, NonsecureFirmwareVersion
pub enum BootCommand {
// example: 5A|00|0000|00000000|00000000|00000000
Nop,
// example: F3|01|0180|00000000|B2640000|01000000
Tag {
last: bool,
tag: u32,
flags: u32,
cipher_blocks: u32,
},
// example: 8F|02|0000|00000000|00020000|A6D9585A
Load {
address: u32,
data: Vec<u8>,
},
// example?
/// See ELFTOSB document for explanations of what is supposed to happen when
/// address is not on a word boundary.
///
/// In any case, if a byte is supposed to be repeated, it must be replicated
/// four times in the `pattern`, e.g. "fill with 0xF1" => pattern = `0xf1f1_f1f1`.
Fill {
address: u32,
bytes: u32,
pattern: u32,
},
// example?
EraseAll,
// example: 01|07|0000|00000000|00980800|00000000
// NB: this command is interpreted as "erase all flash sectors that intersect with the
// specified region"
EraseRegion {
address: u32,
bytes: u32,
},
CheckSecureFirmwareVersion {
version: u32,
},
CheckNonsecureFirmwareVersion {
version: u32,
},
}
impl BootCommand {
pub fn to_bytes(&self) -> Vec<u8> {
use BootCommand::*;
let mut cmd: RawBootCommand = Default::default();
match self {
Nop => {
cmd.tag = BootTag::Nop as u8;
Vec::from(cmd.to_bytes().as_ref())
}
Tag {
last,
tag,
flags,
cipher_blocks,
} => {
cmd.tag = BootTag::Tag as u8;
if *last {
cmd.flags = 1;
} else {
cmd.flags = 0x8001;
}
cmd.address = *tag;
cmd.data = *flags;
cmd.count = *cipher_blocks;
Vec::from(cmd.to_bytes().as_ref())
}
Load { address, data } => {
if address + data.len() as u32 >= START_OF_PROTECTED_FLASH {
panic!("It is nearly always a mistake to write into the protected flash area");
}
// CRC|tag|flags addr count data
// expected: 54|02|0000 00000000 78090000 7E976AF8
// generated: 03|02|0000 00000000 78090000 FD96E7AC (...)
cmd.tag = BootTag::Load as u8;
cmd.address = *address;
cmd.count = data.len() as u32;
// this takes advantage of the fact that our crc32
// adds "padding till multiple of 16 bytes with zeros"
// to the CRC calculation.
cmd.data = crc32(data);
let blocks = (data.len() + 15) / 16;
// let blocks = (data.len() + 3) / 4;
// let padding = blocks*16 - data.len();
let mut vec = Vec::from(cmd.to_bytes().as_ref());
println!("generated {}", &hex_str!(&vec, 4));
// panic!();
vec.extend_from_slice(data.as_ref());
// add padding
// NB: NXP says to fill with random bytes, I don't see the point.
// We're not actually encrypting anyway, and AES is supposed to be a... cipher ;)
// vec.resize(32 + 16*blocks, 0);
// vec.resize(16 + 4*blocks, 0);
vec.resize(16 + 16 * blocks, 0);
vec
}
EraseAll => {
cmd.tag = BootTag::Erase as u8;
cmd.flags = 1;
Vec::from(cmd.to_bytes().as_ref())
}
EraseRegion { address, bytes } => {
if address + bytes >= START_OF_PROTECTED_FLASH {
panic!("It is nearly always a mistake to erase the protected flash area");
}
cmd.tag = BootTag::Erase as u8;
cmd.address = *address;
cmd.count = *bytes;
Vec::from(cmd.to_bytes().as_ref())
}
CheckSecureFirmwareVersion { version } => {
cmd.tag = BootTag::CheckFirmwareVersion as u8;
// according to nxp/spsdk
cmd.address = 0;
cmd.count = *version;
Vec::from(cmd.to_bytes().as_ref())
}
CheckNonsecureFirmwareVersion { version } => {
cmd.tag = BootTag::CheckFirmwareVersion as u8;
cmd.address = 1;
cmd.count = *version;
Vec::from(cmd.to_bytes().as_ref())
}
_ => todo!(),
}
}
pub fn from_bytes(bytes: &[u8]) -> nom::IResult<&[u8], Self, ()> {
let (i, raw) = RawBootCommand::from_bytes(bytes)?;
Ok(match raw.tag {
// BootTag::Nop => {
0 => {
// todo? check everything zero except checksum
(i, Self::Nop)
}
// BootTag::Tag => {
1 => (
i,
Self::Tag {
last: (raw.flags & 1) != 0,
tag: raw.address,
flags: raw.data,
cipher_blocks: raw.count,
},
),
// BootTag::Load => {
2 => {
let blocks = (raw.count as usize + 15) / 16;
let (i, data_ref) = take(blocks * 16)(i)?;
let data = Vec::from(&data_ref[..raw.count as usize]);
if raw.count as usize != data_ref.len() {
info!(
"surplus random bytes skipped when reading: {}",
hex_str!(&data_ref[raw.count as usize..])
);
}
// verify "CRC-32" calculation:
// raw.data == CRC over entire contents of `data_ref`, including padding
let calculated_crc = crc32(data_ref);
assert_eq!(calculated_crc, raw.data);
(
i,
Self::Load {
address: raw.address,
// bytes: data.len(),
data,
},
)
}
// BootTag::Fill => {
3 => (
i,
Self::Fill {
address: raw.address,
bytes: raw.count,
pattern: raw.data,
},
),
// BootTag::Erase => {
7 => {
let erase_all = (raw.flags & 1) != 0;
let disable_flash_security_state = (raw.flags & 2) != 0;
// not supported yet
assert!(!disable_flash_security_state);
let memory_controller_id = (raw.flags >> 8) & 0b1111;
// expect "internal" flash"
assert_eq!(memory_controller_id, 0x0);
if erase_all {
// raw.address and raw.count are ignored
(i, Self::EraseAll)
} else {
(
i,
Self::EraseRegion {
address: raw.address,
bytes: raw.count,
},
)
}
}
// BootTag::CheckFirmwareVersion => {
0xB => {
// header.m_address = ENDIAN_HOST_TO_LITTLE_U32((uint32_t)m_versionType);
// header.m_count = ENDIAN_HOST_TO_LITTLE_U32(m_version);
// SecureVersion = 0x0,
// NonSecureVersion = 0x1,
let nonsecure_version = (raw.address & 1) != 0;
// header.m_address = ENDIAN_HOST_TO_LITTLE_U32((uint32_t)m_versionType);
// header.m_count = ENDIAN_HOST_TO_LITTLE_U32(m_version);
if nonsecure_version {
(
i,
Self::CheckNonsecureFirmwareVersion { version: raw.count },
)
} else {
(i, Self::CheckSecureFirmwareVersion { version: raw.count })
}
}
_ => todo!("implement other boot commands"),
})
}
}